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FOREWORD

The research work reported herein was conducted at the Boeing Commercial Airplane
Company, P.O. Box 3737, Seattle, Washington, for the Metals and Ceramics Division, Air
Force Materials Laboratory, Air Force Systeins Command, Wright-Patterson Air Force Base,
Ohio, under contract F33615-72-C-2003. The contract was initiated under project 7351,
“Metallic Materials,” task 735106, *“Behavior of Metals,” with Mr. R. C. Donat (AFML/
LLN) acting as project engineer.

The research program was performed by the Boeing Commercial Airplane Company,
structures technology staff, stress research group, fail-safe and fatigue section with Mr. J. P.
Butler acting as program manager and principal investigator. Work began 1 August 1972,
and the experimental work was completed in December 1973. This technical report was
submitted by the authors in March 1974,

The experimental work was done in the structural test laboratories of the Boeing
Commercial Airplane Company by the Materials Laboratory Fatigue and Fracture Group
under Mr. W. B. King, supervisor, and Mr. W. C. Larson, group lead engineer. Mr. D. A. Rees
was the principal test engineer and directed the test work. Assisting Mr. Rees in the test
work were Messrs. P. L. Maliand and J. A. Gertis, while Mr. B. Taylor assisted in the initial
design of the buckling restraint fixtures. Mr. C. D. Czajka was the principal instrumentation
engineer and test machine operator. He was assisted by Messrs. D. P. Nordstrand and R. A.
Sager during this phase of the work.
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SECTION 1

INTRODUCTION

The design of an effective and reliable or durable aircraft structural systemn is
influenced by several considerations. Material selection is one of the initial and primary
elements in this structural design process. In its structural form, a material must resist the
effects of not only the ervelope of maximum loads, but also the total cumulative exposure
to the variable loads during the service life of the structure. Superimposed on these strength
and ratigue requirements is the calendar time etfect of environmental exposure, causing
corrosion and/or embrittlement peculiar to the specific alloy system. However, the chief
detriment to the structural integrity and reliability of an aircraft structural system is the
unanticipated or premature initiation of fatigue damage, regardless of whether such damage
originates from the local environmental physical effects, or from the localized, highly
stressed areas at cutouts or holes, sectional changes, joints or joint fastener locations, in
response to a raechanical loading environment. This early appearance of fatigue-crack
initiation presents, at best, an added and often burdensome maintenance task to the
operator. Furthermore, without the aid of fail-safe or darnage-tolerant structural design, this
early or unexpected fatigue damage initiation may reduce structural integrity and create
structural safety probler:s leading to loss of the structure and aircraft.

Although inadvertent or extraneous transgressions in the many-faceted and often
monumental task of structural design and fabrication do pray a significant part in the actual
fatigue performance of structures, it should be clearly evident that recognition of the
potential variation or scatter in the fatigue performance of real materials and their structures
can reduce or forestall the impact of earlv fatigue damage regardless of its origins. The
application of reliability analysis technology to resolve the problems of fatigue variability is
a logical step. An exploratory development of such an approach is reported in reference 1.
That study pointed out the need for defining the variability in terms of some functional
form, identifying the scatter in fatigue performance, as measured by time (i.e., cycles) to
fatigue crack initiation, in an analytical distributional form. This approach is particularly
important and even necessary if the first and next few likely cases of crack initiation are the
focal peint for measuring the fatigue performance of a group of parts or a fleet of aircraft.

Ordinarily, the evaluation of fatigue performance relies on identifying the median or
average behavior and applying a scatter factor to obtain a likely or “predictable’ operational
life without significant and/or damaging fatigue crack initiation in a detail. Alternately, the
arbitrary least of scatter in a test group or a probabilistic level of fatigue performance,
defined by an assumed distribution, may be used. However, these approaches do not
identify the likelihood of the first or early initiation within a fleet as specifically
investigated in reference 1. In practice, the collection of a sufficient quantity of fatigue
performance data to identify the distributional form of the scatter has been considered an
economically and calendar timewise impossible task during the vital design and initial,
definitive production stage of an aircraft. Thus, the assessment of the statistical fatigue
failure characteristics of maierial/structures in distributional form potentially has serious
limitations. Practical considerations force limited testing that can only guide identification
of the central tendency or scale parameter of a distribution, Controlling the impact of the
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first or early failure in a fleet of aircraft, or the equivalent large group of identical details
under the same Joading environment, requires testing quantities to at least the extent which
includes the desired level of probabilistic performance. Of course, testing to this extent also
provides a capability for selecting the specific distributional function and its shape
parameter for identifying extremal behavior in fatigue.

Two candidate distributions more widely used in the description o' fatigue variability
are the log-normal and the two-parameter Weibull distributions. While tt.e behavior of both
of these distributions is similar for levels of fatigue performance exceeded by 95% or less of
the population, the extremal behavior of the two distributions is significantly different. The
Weibull distributior: appears to recognize extremal behavior and central characteristics more
representatively than the log-normal (ref. 1). In a feasibility study reported in reference 2,
the application of a unique, multidetail fatigue test specimen was explored for aid in the
selection of a basic distribution representative of extremal fatigue scatter. By using a simple
hole in a sheet as a structural element, and a large sheet with an array of such holes, each
structurally independent by virtue of placement, a single test specimen provides a sin:ulation
of a fleet or group of parts. The transposition of the simple open-hole detail to real and
complex configurations of monolithic and built-up configurations . rely relies on accepting
that the local stress env..onment is the prime initiator of fatigue damage, and that local
stresses can be related through stress analysis procedures. In summary, this multidetail
specimen has a potential for providing guidance in aistribution selection for a reliability
analysis approach to fatigue performance assurance. In a single test, sufficient extremal and
central data are gained to relate both regions of a distribution function.

Accordingly, the objective of this research is the development of a 2024-T3 alvminum
alloy data base to guide the selection or identification of a distribution function that
satisfactorily represents fatigue variability. The fatigue performance will be checked in a
flight-by-flight loading environment in contrast to the constant amplitude testing accom-
plished in the feasibility study (ref. 2). Additionally, some specimens having other structural
details, such as-the fastener-filled hole and load transfer, are tested to explore in depth the
nature of fatigue variability.
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SECTION I

TEST PROGRAM

Because of the phenomenalistic nature of fatigue performance and its variability, the
selection of the more appropriate distribution function in a reliability analysis scheme must
rely upon both central and extremal characteristics of a sufficiently large data base to make
that decision with any degree of certainty. Taking advantage of the background experience
reported in the feasibility study (ref. 2), this developmental test program initiated plans for
a data base that will obtain initial sequential data or order-statistical data for a number of
sets of structural details, represented by the stress field of an open-hole or fastener-
containing structure, under : controlled fatigue loading environment. The loading
environment included six arbitrary flight-by-flight loading spectra for application to the two
differently sized specimens to add further realism to the loading as compared to constant
amplitude testing.

A total of 12 large and 20 small specimens of 0.125-in. bare 2024-T3 aluminum alloy
sheet make up the test plan. The smaller specimens include six open-hole specimens. two
fastener-filled specimens and two each of two different levcls of load transfer. A limited
amount of strain gaging was planned to detect any obvious irregularities in the stress
distribution in the basic types of specimens. Details of the program are summarized in
tabies 1 and 2 while the test specimens are illustrated in figures | and 2 and are described
subsequently in more detail. Three heats of material were used to fabricate the specimens.
Chemisiry and mechanical properties of the specific test material are given in table 3.

The definition of fatigue crack initiation on these multidetail specimens is controlled
by a Boeing-developed crack-monitoring system that uses a conductive paint crack detection
circuit. The circuit is carefully placed within 0.030 in. of the edge of the open hole or
within 0.050 in. of the other details at the general area of the net section to intercept the
crack tip. The local strain o1 the crack tip fractures the painted cirruit and actuates a
warning system and shutdown of the fatigue test machine. Both faces of the test specimen
have the crack detection circuit installed for each column of hLoles to detect crack initiation
at four locations on each hole (i.e., two faces and two sides of the detail). The specific
location of a cracked detection circuit was accomplished with a continuity meter check
followed by a local dye penetrant inspection and visual inspection. An overall view of the
crack detection circuitry on a large panel is shown in figure 3 while figure 4 is a closeup
view. Figure 5 illustrates the four types of usage simulation specimens while figure 6
provides a closeup of the crack detection circuit on an open-hole type of specimen.

With detection of a crack on an open-hole specimen, the hole is oversized to 0.375-in.
diameter and coldworked to assure inactivation of that hole as a future crack site. The
spaciug of the open holes is sufficient to avoid significant stress field interference with
adjacent holes after the oversizing treatment. In the large 110-detail specimens, testing was
continued to initiate cracks in at least 10% to 20% of the total exposed holes. Actually, two
of these specimens were carried to 61 and 56 failures, while in the remainder 16 to 24
cracked holes were developed.
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Mecting the requirement for flight-by-flight testing in this program is keyed to the
capability to stabilize the large flat sheets of either size of specimen fcr compressive loads
such as may de ence untered in the ground-air-ground transition of wing lower sarfaces. For
economic reasons, a simple, rigid, welded frame of structural steel accomplishes the
stabilizing action. For the large panels, a 0.19- by 4- by 12-in. rectangular tube is the basic
frame of the fixture. A local reinforcement, a 0.19- by 3- by 10-in. rectangular tube, is
added to the central test area to increase torsional rigidity of the large frame. The smaller
specimen fixture has a frame of 0.375- by 6- by 4-in. rectangular tubing. For both fixtures
the columnar supports are 0.5- by 2-in. bars welded to the frame and intermediate supports.
A stabilizing stress relief was given to the welded assembly before machining to a plane
through the stabilizing-bar contact surface. A teflon coating is baked on each stabilizing
support bar to reduce friction. This coating was refurbished during the test by an onsite
spray coat of a teflon solution. The fixture, in two parts, clamps the specimen between the
two halves. Shimming provides optimally a net to about 0.001-in. clearance for the test
specimen, but actual local fit-up is dependent on basic specimen thickness variation.
Particular care is taken in the fit-up process to assure that load transfer from the specimen
by friction at the fixture contact surfaces is negligible. The fixture is fixed in the test
machine at the static head (i.e., upper head) and has sufficient overall clearance to avoid
bottoming out at the dynamic head under compressive loadings nominally expected. Figures
7 through 13 show the test fixtures and general machine setup. A closeup of the large
structural simulation specimen is given in figure 14. Figure 15 provides an overall view of
the test setup for a large panel and the tool used to pull the coldworking maiidrel through
the oversized hole.

A check of the influence of humidity on crack initiation is also part of the test
program. Two open-hole types of the usage simulation specimen configuration (fig. 2a ) are
tested. A plexiglass environmental chamber, enclosing both the specimen and stabilizing
fixture, is used to contain a 95% relative humidity (RH). That level of RH is obtained by
passing throttled plant air through a series of two plastic jars (of 6.5- and 2.0-gal capacity)
filled with tap water and into the environmental chamber enclosure. By introducing this air
into three locations on each side of the specimen within the chamber, the desired physical
environment was obtained. Incidentally, only the open-hole specimens were tested under
this moist atmosphere since the other specimens by nature of their design did not allow
ready exposure of the specimen stress concentration area to the ambient environment.
Figure 16 is an overall view of the environmental control setup and test machine.

The flight-by-flight loading spectra are of two types. One reflects a cargo/transport or
gust load cxperience. The other spectrum simulates a fighter or maneuver load experience.
In brief, these loadings were generated by assuming a typical flight load profile, selccting the
pertinent loading exceedance data from the literature, using a nominal load stress response
for the structure, choosing an arbitrary S/N curve representative of typical structures, and
applying the Palmgren-Miner cumulative damage rule to condense the expected loadings to
the simplified test loads. Two of the three loading spectra of each type of loading have five
flights with 30 flight load cycles and three ground load cycles per flight. These spectra differ
only in load level. The third spectrur: type (i.e., spectra A-2 or B-2) utilizes the same
loading content of the five-flight, more ssvere loading (i.e., spectra A-1 or B-1), but
introduces ground loading cycles at each flight midpoint to develop a ten-flight spectrum of
identical total load content except for the added ground load cycles. The gust load spectrum
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contains seven levels of cyclic flight loads while the maneuver load spectrum contains four
levels. Tables 4 through 21 present the stress levels and test loads for the program. Figures
17 through 19 graphically compare and summarize the loading content of the two types of
spectra. Actual test loading sequence was generated by simply selecting five sequences of the
basic 30-cycle flight through use of a random number table. The final result, a five- or
ten-flight random loading block, was repeated as necessary to initiate cracks. Figures 20
through 25 show the gust and maneuver spectra.

The test loads were applied by an Electro Mechanical Research (EMR) Programmed
Fatigue Testing Machine. This machine has a 150,000-lb maximum capacity at a frequency
of 0.5 to 20 Hz. Testing in this program was nominally performed at § Hz. The machine can
accommodate specimens up to 180-in. overall length. The machine operates on the
hydraulic servovalve closed-loop principle. Random loading is accomplished by use of a
seven-track digital magnetic tape programmer. The constant amplitude and programmed
loads approximate a square wave at low frequencies and a reversed exponential wave at high
frequercies by nature of the system. Programmed loads for this machine must be introduced
at the nearest 300-1b equivalenit of the selected stress. Overload stops on the machine were
set to provide about 0.010-in. clearance at the maximum load of each type of spectra.
Tensile loads were applied and zeroed three times while compression ioads were applied and
zeroed twice.




SECTION 11

TEST SPECIMENS

The test specimen design of this program is a development of a feasibility study
summarized in reference 2. The large open-hole structural simulation specimen, as described
in figure I, has an overall width dimension of 36in. and a length of 120 in. These
dimensions were primarily selected to be compatible with available standard sheet widths of
other structural alloy systems, like titanium and steel. This configuration provides a
1 10-detail test section that has an increased relative distance between the rigid grip of the
test machine and the array of open holes, as compared to those of reference 2.

A further extension to the multidetail specimen concept is the introduction of other
types of structural details. Fatigue performance of filled-hole and load-transfer structural
details are developed to broaden the data base for ultimate reference in identifying the more
likely distribution function reflecting fatigue damage initiation variability. The added
complexity of these adlitional types of structural details furces the size of the specimens to
a 20-detail configuration. {"igure 2 describes these smaller specimens in detail. The load
transfer is introduced by adding doubler straps on both sides of the basic specimen and
fastening with a single fastener in each end. Varying the distance betwe.:n end fasteners
tends to increase the load transfer by the strap while yet providing a specimen with
symmetry (i.e., double shear). Because of the nature of these more complex specimens as
identified in figures 2b, 2¢, and 2d, it is evident that detail crack sizes at detection are
sufficiently long to cause interactions with the adjacent details. Hence, a single failure per
specimen is the estimated limit of these particular structural details, and a multiplicity of
test specimens are necessary to provide statistically useful extremal data. All of the
specimens had their bonded end doubiers grit-tlasted to improve friction between the test
specimen and the test machine grips. Load transfer at the grips is obtained by high clamp-up
of the grip bolts which pass through clearance holes ir the specimens.

All holes had tool exit burrs removed by use of 600-grit abrasive papcr backed by a flat
steel block and longitudinal action parallel to the columns of holes. Burr removal has been
found necessary to assure deposition of the crack detection circuit at the desired 0.030-in.
distance from hole edge in the open-hole specimens. Normal fabrication practice for
individual parts would deburr holes by chamfering. In assemblies of aluminum alloy
skin-stiffener structure, tooling, hole-drilling practice, and subsequent clamp-up by the
fasteners seems to reduce the influence of burrs as found in these specimens. The
hole-installation procedure is accomplished on a numerically controlled drilling inachine
with four panels stack drilled and reamed at one time.

Strain gages are installed at a 4-in. distance from upper and first row fasteners and at
midsection of the specimen to explore buckling restraint fixture installation effects on load
distribution within typical specimen types. The gages were installed on both open-hole type
of configurations (figs. | and 2a) and the two load transfer specimens (figs. 2c and 2d). A
typical filled-holc specimen was not instrumented because of its close similarity to the
open-hole specimen. For instance, the hole filling qualities would be most effective under
the compressive loads, but these at best are a fraction of the tensile loads. Under tensile
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loads, the lateral hole-propping effect of the close tolerance fasteners, as in figure 2b, does
not override the hole ciscontinuity; hence, no strain measurements were made on this
specimen. The strain gages themselves are a 0.25-in. grid (micromeasurements type
WA 13-250-BA-350). A typical strain gage installation may be noted in figures 3 and 4.
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SECTION 1V

TEST RESULTS

Static strain measurements taken on all the representative specimens are summarized in
tables 22 through 29. Graphic presentations of these results are shown in figures 26 and 27
for the large panel (fig. 1). Data with and without the buckling restraint fixture in place are
se, arately shown. Figures 43 through 47 present the measured strain for the smaller figure 2
specimens having the open-hole and the two-load transfer types of configurations,

A summary of the fatigue test results for the figure 1 type of speciinens is shown in
table 30. Each of the four specimens has the material heat, the ambient physical
environment (e.g., laboratory air), the test spectrum, the crack initiation sequence, location
and size information, plus both the total load points and equivalent cycles to crack
detection. Hole position is identified by column and row designations given in figure 28.
The cyclic load data is counted by the test machine in terms of load points representing the
successive maximum and minimum of any one cycle. Thus, cycles are derived by merely
dividing load points by a factor of twe for the A-1, A-3, B-1, and B-3 spectra. The ten-flight
A-2 and B-2 spectra had zero load level introduced between the transition from the last
flight-load point and the following maximum ground-load level. Hence, the equivalence
between load points and load cycles in these two spectra is a factor slightly greater than two
(i.e., 370 load points represents each ten-flight spectrum of 180 load cycles). Sketches
illustrating the dispersion of the initiated crack locations in these twelve large panels are
presented as figures 29 through 40. As a matter of reference, similar charts are presented as
figures 41 and 42 for the two multidetail panels reported in reference 2. Tables 31, 32, and
33 duplicate the pertinent test data of the two test penels and the single-hole specimens of
reference 2.

A summary of the fatigue test results for the twenty figure 2 types of specimens is
presented in table 34. Strain measurements are plotted in figures 43 through 50.
ldentification of the crack locations is given in figure S1. In figures 52 through 60, sketches
of crack locations, detected after disassembly, are shown for the fastener containing types
of figure 2 specimens. Photographs of fluorescent penetrant inspection results on a typical
figure 2 specimen (2A11) are included as part of figure 55.

In figures 61 through 84, probability plots are shown for both the log-normal and
two-parameter Weibull distributions. Plotting positions (ref. 3) for each initiated crack were
simply determined by the ratio of n/(N+1), where n is the order of detection of each
deiected crack, and N is the total number of test details in each specimen. The solid straight
line in these curves is located by the maximum likelihood estimate (MLE) technique
reported in reference 1. A comparison is also shown of the fixed-shape-parameter fit of the
data. Similar data is presented for the two constant amplitude tested panels (ref. 2), but
with the additional results of the comparable single-hole specimens of that program.

A comparison is made in table 35 of the MLE distribution parameters and the bounds
of the shape parameters for the 12 large panels of this test prograr: plus the two panels and
single-hole  specimens of the reference 2 feasibility study program. The parameter
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calculations were made considering the data in terms of the face of origin of the initiated
fatigue crack as well as the total failures. Failure face origin was established by the location
and size of the crack. Where cracks penetrated through the specimen, the face having the
longer crack, or having a crack at both sides of the hole on one face as well as a through
crack on one side of the hole, was established as the origin face. Where no discernible
aifference in length on either face was noted for through cracks, the crack was arbitrarily
identified as originating on the tool exit face. In tables 36 through 39, the calculated and
test ordered statistical failure characteristics are shown for the first five failures on each
figure | test panel, as well as the two panels and single-hole specimens of reference 2. The
results consider a 0.50 reliability level for the selected number of specimens, a 0.50
reliability level with a 0.95 confidence, and a 0.90 and 0.95 reliability level with no
confidence level. These ordered-failure results are presented for only the total number of
failures (i.e., the number of holes detected with valid cracks).




SECTION V

DISCUSSION OF TEST RESULTS

While no static test properties were performed on the 2024-T3 aluminum alloy sheet
material as part of this program, the mechanical property test data supplied by the vendors
indicate the material did meet specification standards. Furthermore, there is an observable
but not a really significant variation in the properties for each heat.

The behavior of the test specimens, as indicated by the measured static strain data
plotted in figures 26, 27, and 43 through 47, seems to indicate satisfactory response in the
presence of the buckling restraint fixture. The response appears linear over the range of
strain measurements. Although there is some departure from the equivalence of the
measured and applied strains, this difference is believed reasonable. For instance, the
open-hole specimens indicate a slight dropping off of measured stres.. This is more so for
the figure 2a specimen than the figure 1 specimen. This could probably be attributed to the
shunting of stress away from the column of holes due to the discontinuity of the hole. In
the case of the slightly larger hole and closer spaced strain gage in the figure 2a specimen,
this difference is a bit more pronounced. However, the actual magnitude of the difference is
slight and approaches the ordinary limits of strain gage readability. The influence of
structural detail is more obvious in the case of the load transfer straps, as observed in a
comparison of figures 47, 48, and 50. The load transfer straps appear to draw panel load to
their line of action as indicated by the higher measured strains, and ccmpared to the
expected equivalent strain of uniform loading. Furthermore, the longer straps appear to
attract more load as may be inferred by examining figures 46 and 47. It appears that the
buckling restraint fixtures do function to contro! the out-of-plane bending of the specimens
of both sizes. Likewise, no in-plane bending is observable; however, the flexural rigidity of
the specimens is likely to mask any such effect if at all present, because of the careful
attention to specimen lateral alignment in the test grips. It also appears that friction
betrorn the specimen and test fixture is not significar:z, or at least not detectable by the
strain mcasurements.

The observed performance of both test buckling restraint fixtures appeared quite
promising under the dynamic loads and the flight-by-flight loading exposures. The test
panels performed without any observable buckling between the supports. It is believed that
the fixtures function satisfactorily and can provide responsive flight-by-ilight testing.

The crack detection circuitry functioned satisfactorily. The fatigue cracks were
detected at a consistent length, but apparently not quite to the precision found in the
feasibility study reported in reference 2. However, the results are considered far more
consistent than what has been observed in service results on actual structures, and they
should provide a good data base for further development of reliability analysis technology.
Looking at the summary of data found in table 30, there is no pronounced or obvious
difference in crack initiation sites with respect to tool entry or exit face of the specimens of
the figure 1 configuration. A review of the location of crack origins, as illustrated in figures
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29 through 42, indicate a rather random dispersion of the crack locations, even in the case
of specimen A3 in which 61 crack initiation sites were obtained,

Accordingly, the painted crack detection circuitry performed adequately on both sizes
of specimens. However, under the 95% RH conditions, circuit performance for the figure 2A
specimens wau., suspected sufficiently to replace the painted circuitry with crack wires. Even
this change was found to be inadequate and detection had to resort to visual examination
through the plexiglass environmental chamber, with the presence of the wire circuit being a
detriment. Without a ¢¢velopmental program on this type of crack detection circuitry (i.e.,
either painted or wire, it appears that visual observation must be relied upon. Furthermore,
the precision of visual detection under the environmental controls of humidity may not be
adequate to obtain a satisfactory data base. It is thought that simpler tests could resolve the
likely effects of humidity and fatigue crack initiation unless further developmental work is
accomplished on the circuitry. In the case of 2024-T3 material, other programs described in
the literature (i.e., crack propagation) indicate less or negligible effect of this humid
environment as compared to the conventional 7000 series of aluminum alloys (particularly
7075 and 7178). Accordingly, in the current program it is suggested that rcliainice be made
on visual detection of the bare specimens without the camoufiaging effect of the primer and
circuit. As can be observed from the test data in table 34, the RH tests did not produce any
significant cyclic effect, except for specimen 2A4. This figure 2a configuration was found
with a number of cracks not observed through the environmental chamber walls with the
associated ambient environmental test conditicrns.

Examination of the crack initiation data for the structural simulation specimens
(fig. 1), as presented in figures 61 through 88, seems to point out severzi interesting
features. First, the test data in most of the cases exhibits a scatter, as indicated by the shape
parameter, less than the values deduced in reference 1 (i.e., 0.14 for the log-normal and 4.00
for the Weibull distribution). The results for specimen A4 indicate a greater likely scatter.
The extremal replication of data by both the log-i:ormal and Weibull distribu %*ions is not
precise in any of the cases.

One factor, particularly in the case of specimen A4, possibly dictating fatigue response
may be alloy heat differences, although the figure 2a specimens (i.e., open hole) did not
demnonstrate any similar significant behavior. Of course, the latter specimens provide a single
reference point in the 5% failure region, while the figure 1 specimens expand the sampling
scale to Izss than 1%. Possibly the difficulties or limitz tions of sampling, and the coincident
need for sampling to define fatigue behavior confidently in the extremal range, play a part
in formulating these observations. Additional testing quantities should provide a better data
base that can add more guidance to the selection of the distribution.

In an analytical examination of the data, compiled in tables 36 through 39, the
comparison of the actual test data for one through five failures (i.c., initiated cracks) is
made with that predicted from the data by a MLE-analysis and assumed fixed-shape
parameters for the two distributions fitted to the test data. Obviously, the MLE-based data
certainly seems to compare favorably with the test data over the range of considered failures
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for an assessment based on the sample lot or “fleet” size of 110 details and a 0.50 reliability
based on the estimated test mean or characteristic life. Reliability levels of 0.90 and 0.95
expectedly indicate more conscrvatism in scale estimates. Under the assumption of
fixed-shape parameters, all levels of reliability provide more conservative estimates relative
to the actual test data. Furihermore, the Weibull distribution exhibits an appreciably greater
relative reduction in fatigue performance than the log-normal distribution.

Exiending this analysis to include a 0.95 level of confidence at 0.50 reliability shows a
similar response to the influence of reliability level. Examining all of the summarized data in
tables 36 through 39 still indicates a somewhat acceptable comparison between test values,
and the 0.50 reliability based on the 110-detail sample lot per specimen. However, the
demand for increased reliabilities of 0.90 and 0.95 lexds to further conservative differences
between the test and estimated values. In all of these cases the Weibull distribution provides
the more conservative estimate.

In table 25, a summary of the estimated scale and shape parameters is compiled for al
tested specimens of the figure 1 configuration. Essentially similar observations on the
central characteristic parameter (scale or location parameter) are observed as found in the
analysis of the extremal data. With fixed-shape parameters the nominal Weibull charac-
teristic life is greater than those of the log-norma! distribution, as can be noted in comparing
figurss 61 through 84. i contrast, the MLE estimates of the nominal central value from the
test data indicate a ‘‘relatively” close correlation in magnitude of the mean life and
characteristic life for the two distributions. The Weibull distribution indicates slightly lower
values in all but test specimen A3, where the reverse trend is found, although that specimen
had 61 holes with crack origins. Accordingly, this infers a likely difference in prediction of
the median life by the two distributions in all but this latter test case. Adding a requirement
of a 0.95 level of confidence only reinforces the observation that the MLE estimates of the
scale parameters (i.e., the mean or characteristic life) are very similar for both distributions
and each panel.

As to the shape parameter, table 35 shows that distributions fit the data with nominal
values (MLE), indicating less scatter than that proposed in reference ! except in the case of
specimen A4. This same observation is demonstrated in an examination of the plots in
figures 61 thrcugh 84. Looking at “he 2%/98% and 5%/95% bounds on the estimaied shape
tactor, specimen A4 indicates both distributions provide estimates indicating sampling from
a populatiz~ that has the 0.14 or 4.00 shape parameter.

Specimens A2, A8, Al2, and panel one (ref. 2) also indicate a relationship to these
assumed values for the log-normal distribution alone. The shape parameter for all of the
panels indicates less variability in scatter as suggested by a= 4.00 or 0 = 0.14. At the
moment, however, this result is suggested to be a problem of limited sampling, and further
examination of the data by aavanced classes of distributions is recommended.
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SECTION VI

CONCLUSIONS

In summary, several conclusions and recommendations can be developed from the
! testing of thic program. These are essentially as follows:

; a. The test program itself, utilizing the buckling restraint fixtures, can produce
flight-by-flight fatigue crack initiation data for definition cf material/structure
statistical failure characteristics.

b. The open-hole specimen is the more effective costwise specimen in providing both
extremal and central type of data. Testing was successfully accomplished on two
specimens with 6% and 56 out of their 110 open-hole details.

¢. The use of the Boeing previously developed painted crack detection circuit system
is believed to be a simple and effective means to provide consistent fatigue crack
initiation data from a multidetail specimen in a typical ambient laboratory
environment. High humidity conditions (95% RH) are currently too severe for the
4 functioning of the system.
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d. The fatigue performance of the 110-detail structural simulation specimens and the
20-detail usage simulation specimens provide a fatigue statistical response
comparable to actual structures.

e. Fatigue crack origin site as to tool entry or exit face does not appear to occur
significantly on one face or the other in the specimens tested in this program.
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f.  The test results of this program have not demonstrated an obvious advantage for
either the log-normal or Weibull distribution in simulation of the test. However,
the Weibull distribution does demonstrate the expected more conservative
representation of extremal data. This effect becomes more pronounced as higher
levels of reliability are selected.

] g. Fatigue crack initiation in the fastener-filled and load-transfer types of 20-detail
test specimens was found to originate at fretting sites away from the net section
area of the hole itself. This behavior simulates the behavior of joined operational
structures.
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It is recommended that further study of this data be accomplished, particularly in
regard to the choice of an advanced class of distributions for replication of statistical
behavior.
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Figure 1.—Structural Simulation Test Sv.ecimen Configuration
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Figure 4.—Closeup of Strain Gage and Crack Detection Circuit on Structural Simulation Test
Specimen
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Figure 3.--Typical Usage Simulation Test Specimens
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Simulation Test Specimen
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Figure 8.— Bearing Face of Buckling Restraint Fixture for Structural Simulation Test Specimens
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Figure 9.-Buckling Restraint Fixture Assembled on Structural Simulation Test Specimen in Fatigue
Test Machine
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Figure 10.-Side View of Assembled Buckling Restraint Fixture on Structural Simulation Test
Specimen in Fatigue Test Machine
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Figure 11.--Buckling Restraint Jig Installed on a Usage Siraunlation Specimen in 150,000-Lb EMR
Fatigne Test Machine




Figure 12.—One Stabilizing Face of the Buckling Restraint Jig for Usage Simulation Specimens

Suspended From Rail Hoist System of 150,000-Lb EMR Fatigue Test Machine
With Installed Panel
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Figure 13.— Usage Simulation Specimen (Open Hole) With Crack Detection Circuit
and Strain Gages (Buckling Restraint Fixture Section in Background)
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Figire i5.—Hole Cold-Working Tool




Figure 16.—Environmental Control Box and S ystem Installed Around Buckling

Restraint Fixture and Usage Simulation Specimen in 150,000-1.b
EMR Fatigue Test Machine
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Measured gross strain (0.001 in./in.)
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Figure 26.— Comparison of Measured Strains With Applied Equivalent Strains on
Structural Simulation Specinien Without Buckling Restraint Fixture
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Figure 27.— Comparison of Measured Strains With Applied Equivalent Strains
on Structural Simulation Specimen With Buckling Restraint Fixture
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Row
identification

Column
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Tool entry face

Note:

All crack locations
are identified

as extending to the
right or to the left
of the hole location,
given by the associated
column letter and
row number, when
viewed looking at
the tool entry face
of the test specimen.

Figure 28.-Identification of Hole Location and Crack Growth Direction in
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Structural Simulation Test Specimen Configuration




Legend:
@ Tool entry face origin
@® Tool exit face origin

Note: Supersc: ipt numeral is detection sequence.

ColumnN\ —~_...._....._... 
Row\A B C D E F G H I J K
; 7| I | I | | I | | | I
i—|® 0 0 0o 0 0 0 0 0 O O
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Figure 29.—Fatigue Crack Initiation Sites at Holes in Structural Simulation
Specimen Al. {Al. Alloy 2024-T3 Heat A, Test Spectrum A-1)
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Legend:
@ Tool entry face origin
@ Tool exit face origin

Note: Superscript numeral is detection sequence.
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Figure 30.—Fatigue Crack Initiation Sites at Holes in Structural Simulation
Specimen A2, (Al. Alloy 2024-T3 Heat A, Test Spectrum A-1)
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Legend:
@ Tool entry face origin
® Tool exit face origin

Note: Superscript numeral is detection sequence
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Figure 31.—Fatigue Crack Initiation Sites at Holes in Structural Simulation
Specimen A3. (Al Alloy 2024-T3 Heat B, Test Spectrum A-1)
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Legend:
@ Tool entry face origin
® Tool exit face origin

Note: Superscript numeral is detection sequence.

A B C D E F G H | J K
A T A Y TR N TR I
i—lo o o o0 % o0 'e " ‘e % e
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Figure 32 - Fatigue Crack hiitiation Sites at Holes in Structural Simulation
Specimen A4. (Al Alloy 2024-T3 Heat C, Test Spectrum B-1)

50




Legend:

@ Tool entry face origin
® Tool exit face origin

Note: Superscript numeral is detection sequence.
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Figure 33, - Fatigue Crack Initiation Sites at Holes in Structural Simulation
Specimen A3 (Al Alloy 2024-T3 Heat B, Test Spectirum A-1)
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Legend:

@ Tool entry face origin
@® Tool exit face origin

Note: Superscript numeral is detection sequence.
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Figure 34.—Fatigue Crack Initiation Sites at Holes in Structural Simulation
Specimen A6. (Al. Alloy 2024-T3 Heat A, Test Spectrum B-1)
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Legend:

@ Tool entry face origin
@ Tool exit face origin

Note: Superscript numeral is detection sequence.
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Figure 35.-Fatigue Crack Initiation Sites at Holes ia Struciiiral Sinwdation
Specimen A7. (Al Alloy 2024-T3 Hzat A, Test Spectrum A-2)
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Legend:

| @ Tool entry face origin
J @® Tool exit face origin
|

Note: Superscript numeral is detection sequence.

i Column[mﬁ’_’\"—
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Figure 36, —Fatigue Crack Initiation Sites at Holes in Structural Simulation
Specimen AS. (Al Alloy 2024-T 3 l{eat A, Test Spectrum B-1)
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Legend:

@ Tool entry face origin
® Tool exit face origin

Note: Superscript numeral is detection sequence,
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Figure 37 —Fatigue Crack Initiation Sites ar Holes in Structural Simulation
Specimen AY. (Al Alloy 2024-T3 Ileat A, Test Spectrum B-2
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Legend:
@ Tool entry face origin
® Tool exit face origin

Note: Superscript numeral is detection sequence.
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Figure 38— Fatigue Crack Ini tiation Sites at Holes in Structural Simulation
Specimen A10, (Al Alloy 2024-T3 Heat A, Test Spectrum A-3)
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Legend:
@ Too! entry face origin
® Too!l exit face origin

Note: Superscript numeral is detection sequence.
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Figure 39— Fatigue Crack Initiation Sites at Holes in Structural Simulation
Specimen All. (Al Alloy 2024-T3 Heat A. Test Spectrum B-3)
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Legend:

\ @ Tool entry face origin
\ ® Tool exit face origin

i Note: Superscript numeral is detection sequence.
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Figure 40.—Fatigue Crack luitiation Sites at Holes in Structural Simulation
Specimen Al12. (Al Alloy 2024-T3 Heat C, Test Spectrum A-1)
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Legend:
@ Tool entry face origin
@® Tool exit face origin

[ Note: Superscript numeral is detection sequence.
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Figure 41.- Fangue Crack Initiation Sites in Holes of Multiole Panel No. 1,
Reference 2 (Al Alloy 2024-T3 0.125 In. Thick)
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Legend:

@ Tool entry face origin
® Tool exit face origin

Note: Supersript numeral is detection sequence,

T
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Figure 42.Fatigue Crack Initiation Sites in Holes of Multihole Panel No. 2,
Reference 2. (Al Alloy 2024-T3, 0.125 In. Thick)
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Note:
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the open hole
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location when
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entry face
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Tool. ENTRY SURFACE

| b.  Specimen 2A11 Fluorescent Penetrant Identification of Fatigue Cracks and Local Surface Fretting
| on Tool Entry Curface After Disassembly at Fasteners 1, 2, 11, and 12

Figure 55.-Continued
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c. Specimen 2A11 Fluorescent Penetrant Identification of Fatigue Cracks and Local Surface Fretting
on Tool Exit Surface After Disassembly at Fasteners 1, 2, 11, and 12

Figure 55.—Continued
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d.  Specimen 2A11 Fluorescent Penetrant Identification of Fatigue Cracks and Local Surface Fretting
on Tool Entry Surface After Disassembly at Fasteners 3, 4, 13, and 14

Figure 55 —Continued
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on Tool Exit Surface After Disassembly at Fasteners 3, 4, 13, and 14

Figure 55, -Continued
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f.  Specimen 2A11 Fluorescent Penetrant Identification of Fatigue Cracks and Local Surface Fretting
on Tool Entry Surface After Disassembly at Fasteners 5, 6, 15, and 16

Figure 55. --Continued {
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g. Specimen 2A11 Fluorescent Penetrant Identification of Fatigue Cracks and Local Surface Fretting
, on Tool Exit Surface After Disassembly at Fasteners 5, 6, 15, and 16
: Figure 55. -Continued ]
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Specimer: 2A11 Fluorescent Penetrant |dentification of Fatigue Cracks and Loca! Surface Fretting
un Tool Entry Surface After Disassembly at Fasteners 7, 8, 17, and 18

Figure 55. —Continued
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: - Tool ENTRY SURFACE

- Specimen 2A11 Fluorescent Penetrant ldentification of Fatigue Cracks and Local Surface Fretting g
on Tool Entry Surface After Disassembly at Fasteners 9, 10, 19, and 20

Figure 55.— Continued
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k.  Spe~imen 2A11 Fluorescent Penetrant ldentification of Fatigue Cracks and Local Surface Fretting
o Tool Exit Surface After Disassembly at Fasteners 9, 10, 19, and 20

Figure 55. - Concluded
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TABLE |.-SUMMARY OF TEST PROGRAM AND NUMBER OF SPECIMENS

Test spectrum Material and Total
wientification number of number
Test test specimens of
speclmen test
configuraticn specimens
No. Description Heat Heat Heat per
A B C configuration

Figure 1 A-1 Gust load 2 1 1
A-2 Gust load 1 - -

Structural A-3 Gust load 1 - - 12
simulation B-1 Maneuver load 2 1 1
B-2 Maneuver load 1 - -
B-3 Maneuver load 1 - -
Figure 2a A-1 Gust load 2° - 1
A-2 Gust load 1 - -

Usage A3 Gust load 1 - - 10
simulation B-1 Maneuver load 2° 1 -
open hole B-2 Maneuver load 1 - -
B-3 Maneuver load 1 - -
Figure 2b A-1 Gust load 1 - =
A-2 Gust load - - -

Usage A-3 Gust load - - - 2
simulation B-1 Maneuver load - 1 -
filled hnle B-2 Maneuver load - - -
B-3 Maneuver load — - -
Figure 2¢ A-1 Gust load 1 1 1
A-2 Gust load - - —

Usage A-3 Gust load - - - 4
simulation B-1 Maneuver load - 1 -
load transfer B-2 Maneuver load - - -
type | B-3 Maneuver load - - -
Figure 2d A-1 Gust load 1 1 1
A-2 Gust load - - -

Usage A-3 Gust load - - - 4
simulation B-1 Maneuver load - 1 -
load transfer B-2 Maneuver load - - -
type Il B-3 Maneuver load - - -

30ne specimen tested under 95% relative humidity
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TABLE 2.

CORRELATION OF TEST SPECIMEN IDENTII'ICATION NUMBER WIT!I
BOEING MANUFACTURING DRAWING NUMBER AND PANI:L FABRICATION NUMBER

r

Test Material Panel
specimen heat Drawing Drawing title fabrication
identification | number number number
number
Al A 64-22727-1 Multihole Structural Simuiation Specimen 1
A2 A -1 2
A3 B 2 1
A4 C -3 1
A5 B -2 2
A6 A -1 4
A7 A -1 5
A8 A -1 3
A9 A 1 7
A10 A -1 6
Al A -1 8
A12 C 3 2
2A1 A 64-22728-1 Usage Simulation Test Specimen  —Open Hole 1
2A2 A -1 —Open Hole 2
2A3 A -1 —Open Hole 3
2A4 A -1 —Open Hole 4
2A5 B -2 —Qpen Hole 1
2A€ C -3 —Open Hoie 1
2A7 A 4 —Filled Hole 1
2A8 B -5 —Filled Hole 1
2A9 A -8 —Ld. Trans.—type | 1
2A10 B -9 —Ld. Trans.—type | 1
2A11 A -6 —Ld. Trans.—type Il 1
2A12 B -7 —Ld. Trans.—type Il 1
2A13 A -1 —Open Hole 5
2A14 A -1 —Open Hole 6
2A15 A -1 —Open Hole 7
2A16 A -1 —Open Hole 8
2A17 B -7 ~Ld. Trans.—type I 2
2A18 (o -23 —Ld. Trans.—type |1 1
2A19 B -9 —Ld. Trans.—type | 2
2A20 c 24 —Ld. Trans.—type ! 1
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TABLE 4 BASIC TEST LOADS PER FLIGHT FOR LOAD SPECTRUM A-1(GUST LOADING)

Test loads?
Number - F . .
of Nominal Structural simulation Usage simulation
loads stress specimen specimen
per levels (fig. 1) {fig. 2)
flight
f max fmin Pmax Pmin Pmax Pmin
(ksi) {ksi) {kip) {kip) (kip) {kip)
j 3 48 7.9 21.6 -36.7 6.0 9.9
1 14 15.1 5.0 68.1 228 18.9 6.3
5 16.3 38 735 17.1 20.4 48
] 4 168 3. 75.6 14.1 214 39
] 3 175 24 78.9 108 219 3.0
2 18.7 1.44 84.3 6.6 234 18
1 199 0.24 89.7 1.2 249 0.3
1 221 ‘1.9 99.3 8.7 27.6, 2.4
]

3 Test loads are taken at appropriate 300-Ib unit of gross load to match
test machine load-programming requirements.

bNominal stress level based on nominal gross area of panels:
A;=10.00x0.125 = 1.25sq in. {usage simulation specimen)

Ay = 36.00 x 0.125 = 4.50 sq in. (structural simulation specimen)

Stresses at nearest 100 psi for usage simulation specimen loads.
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